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PROBLEM OF MIXED SIGNALS IN TUMOR MICROENVIRONMENT 
 

o  studied	system	is	a	complex	mixture	of	signals	of	various	origins	
o  tumors	are	engulfed	in	a	tumor	microenvironment	(TME)	that	

cri:cally	impacts	progression	and	response	to	therapy1	
o  TME	includes	tumor	cells,	fibroblasts,	and	a	diversity	of	immune	cells1	
o  it	is	possible	to	separate	complex	signal	mixtures,	using	classical	and	

advanced	methods	of	source	separa:on	and	dimension	reduc:on2	

OUR APPROACH  
o  independent	components	analysis	(ICA)3	to	decipher	sources	of	signals	

shaping	transcriptomes	(global	quan:ta:ve	profiling	of	mRNA	molecules)		
					of	tumor	samples	
o  par:cular	focus	on	immune	system-related	signals	
o  applica:on	of	ICA	itera:vely	decomposing	components		into	sub-components	

that	can	be	interpreted	using	pre-exis:ng	immune	signatures	through	
correla:on,	enrichment4	or	overdispersion5		analysis	

TOOLBOX 

PIPELINE 

?

o  iden:fica:on	of	signals	related	to	groups	of	immune	cell	types	with	unsupervised	learning	approach	
in	a	Breast	Carcinoma	dataset	

o  enrichment,	correla:on	and	oversipersion	analysis	iden:fied	significa:ve	groups	corresponding	to	
three	out	of	five	sub-signals:	(1)	T-cells,	(2)	DC/Macrophages,	(3)	Monocytes/	Macrophages/	
Eosynophiles/Neutrophiles	

	

o  evalua:on	of	robustness	of	the	represented	groups		
o  applica:on	in	several	types	of	cancer		
o  characteriza:on	the	immune	infiltra:on	degree	in	the	cancer	transcriptome	dataset	
o  further	correlate	the	immune	infiltrate		with	pa:ents’	survival	and	tumor	characteris:cs	
o  compare	to	alterna:ve	(supervised)	methods	

	
o  the	level	of	defini:on	of	deconvolu:on	(cell	groups	–	cell	types	–	cell	subtypes)	
o  evalua:on	of	cell	type	propor:on		
o  data	quality	
	

Deconvolu3on		of	mixed	signal	in	TME	gives	be=er	insight	into	TME	landscape		
	
Unsupervised	technique	=		robustness	&	no	overfiEng	
	
It	allows	be=er	explora3on	of		most	available	and	accessible	resource	:	transcriptomic	data	
	
In	the	case	of	success,	the	results	will	be	used	in	the	diagnosis	and	cancer	therapy,		
especially	immunotherapies	
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deconvolu3on		
objec:ve	is	to	find	cell	type	specific	expression	and	cell	type	abundance	
from	 complex	 :ssue	 total	 gene	 expression	 (RNA	 levels)	 through	 a	
mathema:cal	manipula:on	of	the	matrix	

unsupervised	deconvolu3on		
algorithm	 does	 not	 have	 any	 previous	 informa:on	 about	 cell	 types	
number,	quan::es	or	marker	genes	

Independent	Components	Analysis	(ICA)	

a	 sta:s:cal	 and	 computa:onal	 technique	 for	 revealing	 hidden	 factors	
that	underlie	sets	of	random	variables,	measurements,	or	signals	
based	on	the	no:on	of	mutual	informa:on	between	components;	source	
of	factors	must	be	independent.	
	

Main	ICA	theorem14	:		
Minimize	mutual	informa:on	=	maximize	non-gaussivity		
	

Comparing	 to	 Principal	 Component	 Analysis	 (PCA)15,	 ICA	 does	 not	
impose	orthogonality	of	components.	
	

Comparing	 to	 Nega3ve	 Matrix	 Factoriza3on	 (NMF)16,	 ICA	 does	 not	
impose	any	constraints,	while	NMF	impose	non-nega:vity	of	the	weights	
and	 data.	 In	 our	 ICA	 analysis,	 nega:ve	 projec:ons	 are	 interpreted	 in	
terms	 of	 absolute	 values.	 Tests	 performed	 with	 NMF	 for	 immune	 cell	
types	deconvolu:on	gave	results	hard	to	interpret	(data	not	shown).			

Independent	components	are		
direc:ons	of	non-gaussivity	
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immune	signatures	

also	called	‘marker	genes’;	set	of	genes	allowing	a	differen:a:on	of	one	immune	cell	type	from	an	other.	 	In	our	analysis	we	are	using	sets	of	marker	
genes	published	in	R	package	‘Cell	Mix’17	as	well	as	more	recent	published12,13,	18-24	and	in	house	curated	signatures.		
We	 accord	 higher	 accuracy	 to	 signatures	 coming	 from	 cancer	 studies23.	 We	 also	 value	 weighted	 signatures11,12,19,	 as	 they	 can	 be	 explored	 and	
interpreted	in	more	quan:ta:ve	way.		
We	believe	there	is	a	need	to	establish	gold	standards	for	‘immune	signatures’	depending	on	the	signature	context	and	purpose	of	applica:on.		

Pipeline	of	our	deconvolu:on	procedure.	Started	with	public	transcriptomic	data	of	breast	carcinoma6..	 	Normalized	matrix	included	 	measure	of	 	14709	
transcripts	with	corresponding	HUGO	names	 for	277	pa:ents	 treated	with	 tamoxifen.	Data	were	centered	and	transformed	 into	 log10	space.	FastICA3	

algorithm	 was	 applied	 to	 the	 matrix.	 Number	 of	 components	 was	 decided	 based	 on	 icasso	 stability	 criterion.	 Resul:ng	 independent	 components	
(metagenes)	were	 interpreted	 through	GESEA	analysis	 using	MSigDB7,	GO8,	 KEGG9	 and	Reactome10,	 correla:on	analysis	with	 known	metagenes11	 and	
through	overdispersion	 analysis5.	 Therefore	 the	matrix	was	 reduced	 to	 the	 genes	 the	most	 contribu:ng	 to	 the	 component	 characterized	 as	 immune-
related	 (IC3)	 and	 the	 FastICA	 	algorithm	was	 applied	 to	 centered	 reduced	matrix.	 Resul:ng	 components	 (metagenes)	were	 again	 characterized	 using	
men:oned	 tools	 with	 database	 completed	 with	 a	 set	 of	 immune	 signatures	 (see	 Toolbox:	 immune	 signatures).	 Three	 out	 of	 5	 components	 were	
associated	with	groups	of	cell	types.	Here	visualized	through	spearman	correla:on	with	marker	genes	expression	of	22	immune	cell	(sub)types	from	LM22	
matrix12,13	where	nega:ve	colors	correspond	to	nega:ve	correla:ons	and	the	size	of	the	point	to	the	correla:on	coefficient.	Only	significa:ve	(p-value<	
0.05)	correla:ons	are	represented.	The	three	iden:fied	groups	were	(sub	IC3.5)	T-cells,	(sub	IC3.2)	Monocytes/	Macrophages	M0	and	M2/	Eosynophiles/
Neutrophiles,	(sub	IC3.1)	DC/Macrophages	M0.	Remaining	sub	IC3	(sub	IC3.3	and	sub	IC3.4)	components	were	featureless.	
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